DRDO test fires BRAHMOS missile successfully

DRDO test fires BRAHMOS missile successfully: On October 18, 2020, the Defence Research Development Organization (DRDO) test fired the BRAHMOS missile from INS Chennai successfully. The missile was test fired from an indigenously built stealth destroyer INS Chennai. The missile hit a target in Arabian Sea.

About DRDO

DRDO is the R&D wing of Ministry of Defence, Govt of India, with a vision to empower India with cutting-edge defence technologies and a mission to achieve self-reliance in critical defence technologies and systems, while equipping our armed forces with state-of-the-art weapon systems and equipment in accordance with requirements laid down by the three Services. DRDO’s pursuit of self-reliance and successful indigenous development and production of strategic systems and platforms such as Agni and Prithvi series of missiles; light combat aircraft, Tejas; multi-barrel rocket launcher, Pinaka; air defence system, Akash; a wide range of radars and electronic warfare systems; etc., have given quantum jump to India’s military might, generating effective deterrence and providing crucial leverage.

Balasya Mulam Vigyanam”—the source of strength is science-drives the nation in peace and war. DRDO has firm determination to make the nation strong and self-reliant in terms of science and technology, especially in the field of military technologies.

DRDO was formed in 1958 from the amalgamation of the then already functioning Technical Development Establishment (TDEs) of the Indian Army and the Directorate of Technical Development & Production (DTDP) with the Defence Science Organisation (DSO). DRDO was then a small organisation with 10 establishments or laboratories. Over the years, it has grown multi-directionally in terms of the variety of subject disciplines, number of laboratories, achievements and stature.

DRDO test fires BRAHMOS missile successfully

Today, DRDO is a network of more than 50 laboratories which are deeply engaged in developing defence technologies covering various disciplines, like aeronautics, armaments, electronics, combat vehicles, engineering systems, instrumentation, missiles, advanced computing and simulation, special materials, naval systems, life sciences, training, information systems and agriculture. Several major projects for the development of missiles, armaments, light combat aircrafts, radars, electronic warfare systems etc.


BRAHMOS is a supersonic missile. It was jointly developed by India and Russia. BrahMos as ‘prime strike weapon’ will ensure the warship’s invincibility by engaging naval surface targets at long ranges, thus making the destroyer another lethal platform of Indian Navy. The highly versatile BrahMos has been jointly designed, developed and produced by India and Russia.

The BrahMos is a medium-range ramjet supersonic cruise missile that can be launched from submarine, ships, aircraft, or land. It is the fastest supersonic cruise missile in the world.

BRAHMOS is a two-stage missile with a solid propellant booster engine as its first stage which brings it to supersonic speed and then gets separated. The liquid ramjet or the second stage then takes the missile closer to 3 Mach speed in cruise phase. Stealth technology and guidance system with advanced embedded software provides the missile with special features.

The missile has flight range of up to 290-km with supersonic speed all through the flight, leading to shorter flight time, consequently ensuring lower dispersion of targets, quicker engagement time and non-interception by any known weapon system in the world.

It operates on ‘Fire and Forget Principle’, adopting varieties of flights on its way to the target. Its destructive power is enhanced due to large kinetic energy on impact. Its cruising altitude could be up to 15 km and terminal altitude is as low as 10 meters. It carries a conventional warhead weighing 200 to 300 kgs.

DRDO test fires BRAHMOS missile successfully

Classification of Missile

Missiles are generally classified on the basis of their Type, Launch Mode, Range, Propulsion, Warhead and Guidance Systems.


  1. Cruise Missile
  2. Ballistic Missile

Launch Mode:

  1. Surface-to-Surface Missile
  2. Surface-to-Air Missile
  3. Surface (Coast)-to-Sea Missile
  4. Air-to-Air Missile
  5. Air-to-Surface Missile
  6. Sea-to-Sea Missile
  7. Sea-to-Surface (Coast) Missile
  8. Anti-Tank Missile


  1. Short Range Missile
  2. Medium Range Missile
  3. Intermediate Range Ballistic Missile
  4. Intercontinental Ballistic Missile


  1. Solid Propulsion
  2. Liquid Propulsion
  3. Hybrid Propulsion
  4. Ramjet
  5. Scramjet
  6. Cryogenic


  1. Conventional
  2. Strategic

Guidance Systems:

  1. Wire Guidance
  2. Command Guidance
  3. Terrain Comparison Guidance
  4. Terrestrial Guidance
  5. Inertial Guidance
  6. Beam Rider Guidance
  7. Laser Guidance
  8. RF and GPS Reference

DRDO test fires BRAHMOS missile successfully

On the basis of Type:

(i) Cruise Missile: A cruise missile is an unmanned self-propelled (till the time of impact) guided vehicle that sustains flight through aerodynamic lift for most of its flight path and whose primary mission is to place an ordnance or special payload on a target. They fly within the earth’s atmosphere and use jet engine technology. These vehicles vary greatly in their speed and ability to penetrate defences. Cruise missiles can be categorised by size, speed (subsonic or supersonic), range and whether launched from land, air, surface ship or submarine.

Depending upon the speed such missiles are classified as:

1) Subsonic cruise missile

2) Supersonic cruise missile

3) Hypersonic cruise missile

Subsonic cruise missileflies at a speed lesser than that of sound. It travels at a speed of around 0.8 Mach. The well-known subsonic missile is the American Tomahawk cruise missile. Some other examples are Harpoon of USA and Exocet of France.

Supersonic cruise missile travels at a speed of around 2-3 Mach i.e.; it travels a kilometre approximately in a second. The modular design of the missile and its capability of being launched at different orientations enable it to be integrated with a wide spectrum of platforms like warships, submarines, different types of aircraft, mobile autonomous launchers and silos. The combination of supersonic speed and warhead mass provides high kinetic energy ensuring tremendous lethal effect. BRAHMOS is the only known versatile supersonic cruise missile system which is in service.

Hypersonic cruise missile travels at a speed of more than 5 Mach. Many countries are working to develop hypersonic cruise missiles. BrahMos Aerospace is also in the process of developing a hypersonic cruise missile, BRAHMOS-II, which would fly at a speed greater than 5 Mach.

(ii) Ballistic Missile: A ballistic missile is a missile that has a ballistic trajectory over most of its flight path, regardless of whether or not it is a weapon-delivery vehicle. Ballistic missiles are categorised according to their range, maximum distance measured along the surface of earth’s ellipsoid from the point of launch to the point of impact of the last element of their payload. The missile carry a huge payload. The carriage of a deadly warhead is justified by the distance the missile travels. Ballistic missiles can be launched from ships and land based facilities. For example, Prithvi I, Prithvi II, Agni I, Agni II and Dhanush ballistic missiles are currently operational in the Indian defence forces.

On the basis of Launch Mode:

(i) Surface-to-Surface Missile: A surface-to-surface missile is a guided projectile launched from a hand-held, vehicle mounted, trailer mounted or fixed installation. It is often powered by a rocket motor or sometimes fired by an explosive charge since the launch platform is stationary.

(ii) Surface-to-Air Missile: A surface-to-air missile is designed for launch from the ground to destroy aerial targets like aircrafts, helicopters and even ballistic missiles. These missiles are generally called air defence systems as they defend any aerial attacks by the enemy.

(iii) Surface (Coast)-to-Sea Missile: A surface (coast)-to-sea missile is designed to be launched from land to ship in the sea as targets.

(iv) Air-to-Air Missile: An air-to-air missile is launched from an aircraft to destroy the enemy aircraft. The missile flies at a speed of 4 Mach.

(v) Air-to-Surface Missile: An air-to-surface missile is designed for launch from military aircraft and strikes ground targets on land, at sea or both. The missiles are basically guided via laser guidance, infrared guidance and optical guidance or via GPS signals. The type of guidance depends on the type of target.

(vi) Sea-to-Sea Missile: A sea-to-sea missile is designed for launch from one ship to another ship.

(vii) Sea-to-Surface (Coast) Missile: A sea-to-surface missile is designed for launch from ship to land based targets.

(viii) Anti-Tank Missile: An anti-tank missile is a guided missile primarily designed to hit and destroy heavily-armoured tanks and other armoured fighting vehicles. Anti-tank missiles could be launched from aircraft, helicopters, tanks and also from shoulder mounted launcher.

DRDO test fires BRAHMOS missile successfully

On the basis of Range:

This type of classification is based on maximum range achieved by the missiles. The basic classification is as follows:

(i) Short Range Missile
(ii) Medium Range Missile
(iii) Intermediate Range Ballistic Missile
(iv) Intercontinental Ballistic Missile

On the basis of Propulsion:

(i) Solid Propulsion: Solid fuel is used in solid propulsion. Generally, the fuel is aluminium powder. Solid propulsion has the advantage of being easily stored and can be handled in fuelled condition. It can reach very high speeds quickly. Its simplicity also makes it a good choice whenever large amount of thrust is needed.

(ii) Liquid Propulsion: The liquid propulsion technology uses liquid as fuel. The fuels are hydrocarbons. The storage of missile with liquid fuel is difficult and complex. In addition, preparation of missile takes considerable time. In liquid propulsion,  propulsion can be controlled easily by restricting the fuel flow by using valves and it can also be controlled even under emergency conditions. Basically, liquid fuel gives high specific impulse as compared to solid fuel.

(ii) Hybrid Propulsion: There are two stages in hybrid propulsion – solid propulsion and liquid propulsion. This kind of propulsion compensates the disadvantages of both propulsion systems and has the combined advantages of the two propulsion systems.

(iii) Ramjet: A ramjet engine does not have any turbines unlike turbojet engines. It achieves compression of intake air just by the forward speed of the air vehicle. The fuel is injected and ignited. The expansion of hot gases after fuel injection and combustion accelerates the exhaust air to a velocity higher than that at the inlet and creates positive push. However, the air entering the engine should be at supersonic speeds. So, the aerial vehicle must be moving in supersonic speeds. Ramjet engines cannot propel an aerial vehicle from zero to supersonic speeds.

(iv) Scramjet: Scramjet is an acronym for Supersonic Combustion Ramjet. The difference between scramjet and ramjet is that the combustion takes place at supersonic air velocities through the engine. It is mechanically simple, but vastly more complex aerodynamically than a jet engine. Hydrogen is normally the fuel used.

(v) Cryogenic: Cryogenic propellants are liquefied gases stored at very low temperatures, most frequently liquid hydrogen as the fuel and liquid oxygen as the oxidizer. Cryogenic propellants require special insulated containers and vents which allow gas to escape from the evaporating liquids. The liquid fuel and oxidizer are pumped from the storage tanks to an expansion chamber and injected into the combustion chamber where they are mixed and ignited by a flame or spark. The fuel expands as it burns and the hot exhaust gases are directed out of the nozzle to provide thrust.

On the basis of Warhead:

(i) Conventional Warhead: A conventional warhead contains high energy explosives. It is filled with a chemi al explosive and relies on the detonation of the explosive and the resulting metal casing fragmentation as kill mechanisms.

(ii) Strategic Warhead: In a strategic warhead, radio active materials are present and when triggered they exhibit huge radio activity that can wipe out even cities. They are generally designed for mass annihilation.

On the basis of Guidance Systems:

(i) Wire Guidance: This system is broadly similar to radio command, but is less susceptible to electronic counter measures. The command signals are passed along a wire (or wires) dispensed from the missile after launch.

(ii) Command Guidance: Command guidance involves tracking the projectile from the launch site or platform and transmitting commands by radio, radar, or laser impulses or along thin wires or optical fibres. Tracking might be accomplished by radar or optical instruments from the launch site or by radar or television imagery relayed from the missile.

(iii) Terrain Comparison Guidance: Terrain Comparison (TERCOM) is used invariably by cruise missiles. The system uses sensitive altimeters to measure the profile of the ground directly below and checks the result against stored information.

(iv) Terrestrial Guidance: This system constantly measures star angles and compares them with the pre-programmed angles expected on the missile’s intended trajectory. The guidance system directs the control system whenever an alteration to trajectory is required.

(v) Inertial Guidance: This system is totally contained within the missile and is programmed prior to launch. Three accelerometers, mounted on a platform space-stabilised by gyros, measure accelerations along three mutually perpendicular axes; these accelerations are then integrated twice, the first integration giving velocity and the second giving position. The system then directs the control system to preserve the pre-programmed trajectory. This systems are used in the surface-to-surface missiles and in cruise missiles.

(vi) Beam Rider Guidance: The beam rider concept relies on an external ground or ship-based radar station that transmits a beam of radar energy towards the target. The surface radar tracks the target and also transmits a guidance beam that adjusts its angle as the target moves across the sky.

(vii) Laser Guidance: In laser guidance, a laser beam is focused on the target and the laser beam reflects off the target and gets scattered. The missile has a laser seeker that can detect even miniscule amount of radiation. The seeker provides the direction of the laser scatters to the guidance system. The missile is launched towards the target, the seeker looks out for the laser reflections and the guidance system steers the missile towards the source of laser reflections that is ultimately the target.

(viii) RF and GPS Reference: RF (Radio Frequency) and GPS (Global Positioning System) are examples of technologies that are used in missile guidance systems. A missile uses GPS signal to determine the location of the target. Over the course of its flight, the weapon uses this information to send commands to control surfaces and adjusts its trajectory. In a RF reference, the missile uses RF waves to locate the target.

DRDO test fires BRAHMOS missile successfully

The major classification of the missiles is Cruise Missiles and Ballistic Missiles

Ballistic missiles

The Ballistic Missiles are those missiles that have a ballistic trajectory. The currently operational ballistic missiles in the Indian Defence Systems are Prithvi I, Agni I, Prithvi II, Agni II and Dhanush.

Cruise Missiles

Cruise Missiles are those missiles that are self-propelled till impact. They use jet engine technology and fly within the atmosphere.

The Cruise missiles can be categorised based on their speed, range, size and whether launched from air, land or surface ship or submarine.


Based on the speeds, the missiles are classified as follows

  • Hypersonic cruise missile
  • Subsonic Cruise Missile
  • Supersonic Cruise Missile

The Hypersonic Cruise missile travels at a speed of more than 5 Mach. Supersonic missiles travel at a speed of 2 to 3 Mach. The subsonic missiles travel at a speed of 0.8 mach.

Launch mode

The missiles are classified as follows based on their launch mode

Surface to surface missile

These missiles have a guided projectile Anda launched from a a vehicle mounted or trailer mounted or handheld or fixed installation. They are powered by a rocket motor or explosive charges.

Surface to air missiles

They are designed for launch from ground full stop there destroyed aerial targets such as helicopters aircraft or even ballistic missiles. They are generally called the air defence systems as they are generally involved in aerial attack.

Surface to sea missiles

These missiles are launched from land to destroy ships in the sea as targets.

Air to air missiles

These missiles are launched from aircraft to destroy the enemy aircraft.

The Other types are air to surface missile, sea to sea missile, anti tank missile and sea to surface missile.


The missiles are classified based on their range as follows

  • Short range missile
  • Medium range missile
  • Intercontinental ballistic missile
  • Intermediate range missile


The missiles are classified as follows based on their proportion

Solid propulsion

Generally aluminium powder is used as solid propulsion fuel. They reach high speeds very quickly.

Liquid propulsion

The liquid propulsion Technology uses liquid as fuel. Generally, hydrocarbons are used as liquid propulsion fuels. However, storage of liquid propulsion fuel in the missiles is difficult. The impulse given by liquid propulsion fuel is higher than that of the solid propulsion fuel.

Hybrid propulsion

The two stages of hybrid propulsion are solid propulsion and liquid propulsion.


It does not have turbines.  Rather the compression of air in the missiles is achieved through to forward speed of the missiles. Therefore, the Missile should travel at Supersonic speeds for the air to enter inside. The fuel is injected and ignited. The heat produced from the ignition expands the gases in the air and the combustion accelerates the Missile to higher velocities.


It is Supersonic combustion ramjet. Here hydrogen is used as fuel.


These missiles use liquefied gases stored at very low temperature as fuel. Liquid hydrogen is used as fuel mostly.

Based on Warhead the missiles are classified as conventional Warhead and strategic Warhead.

Based on guidance system the missiles are classified as follows:

  • wire guidance
  • command guidance
  • Terrain comparison guidance
  • Terrestrial guidance
  • inertial guidance
  • beam Rider guidance
  • laser guidance
  • radio frequency and GPS guidance.





Other useful links:

UPSC PrelimsUPSC Mains
Google’s Best Selling BooksOur Best Selling Books
The HinduThe Indian Express
Print Friendly, PDF & Email

Leave a Reply